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a b s t r a c t

The hot-rolled strip laminar cooling (HSLC) process is important to the production quality in hot-rolled

strip product line. How to monitor the strip’s transient temperature and accurately control the coiling

temperature (CT) are the problems in HSLC since the strip temperature can hardly be measured inside

the cooling section. In this paper, a modified EKF with trade-off feed-back coefficient is implemented to

reconstruct the spatial distribution of strip temperature. It has the advantages of simple designation,

having reasonable convergence rate and stability. Then a novel control strategy based on the designed

EKF and model predictive control (MPC) is proposed for HSLC to improve the precision of CT. In MPC,

a predictor is employed to predict the future temperature sequence at the inlet of fine cooling

zone to further improve the performance of MPC. Finally, the reliability and performance of the

proposed monitoring and control method were demonstrated by the experimentations in one HSLC

manufactory.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, with the increasing of customers’ requirements on
the quality of hot-rolled strip, the operating performance of hot-
rolled strip laminar cooling (HSLC) processes becomes more and
more important in hot-rolled strip manufactory, since HSLC is
crucial to the quality of production except of alloying elements
and the mechanical properties of strip are directly determined by
the cooling curve and coiling temperature (CT) of strip (Ding,
Tang, Li, Wang, & Song, 2006). Thus, highly precise control of
HSLC is extremely important. To precise control HSLC processes,
one necessary condition is that the spatial distribution of strip
temperature must be given. However, in real plant, the strip
temperature can hardly be measured inside the cooling section
due to the difficult ambient conditions. Thus, one part of this
paper focuses on estimating the spatial distribution of whole
strip’s temperature with several temperature measurements, and
the other part concentrates on the control method design for
getting precise CT.

Some studies in estimating strip temperature are available in the
literatures. Most of the existing methods use the thermodynamic
model to estimate the spatial distribution of strip temperature

(Han, Lee, Kim, & Jin, 2002; Serajzadeh, 2003). Since the measure-
ments, e.g. CT, are not used to correct the dynamic model’s outputs,
the precision of the thermodynamic model has to be severely high.
However to get very precise HSLC model is a very hard and
expensive work since the shape and grade of strip, and the
environment temperature, etc. greatly affect the cooling process.
In order to precisely estimate the spatial distribution of strip
transient temperature, one effective method is to use measurement
signals to correct the results estimated only by model, and then to
restrain the disturbances. Fortunately, this class of problems, the
design of observers for nonlinear systems, is widely studied in the
process control community (Grip, Saberi, & Johansen, 2012;
Karafyllis & Kravaris, 2012). And Zheng and Li (2011) present an
idea of using extended Kalman filter (EKF) to deduct these dis-
turbances, but some details of the method and how to design the
controller based on this method are not discussed.

As for the control of HSLC, the existing method in manufactory
uses the layout and constant water flux in main cooling zone to
control the cooling rate (CR) of strip, and uses PID controller to
adjust the water flux in fine cooling zone for regulating CT. Since
the strip temperature at the inlet of fine cooling zone dramatically
fluctuates, the PID controller is not competent for the increasing
requirements of strip quality. Model predictive control (MPC)
is naturally a good method to take this task since it could directly
treat with measurable disturbances, and has been widely recog-
nized as a practical control technology with high performance
(Qin & Badgwell, 2003; Richalet, 1993). In MPC, a control action
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sequence is obtained by solving, at each sampling instant, a finite
horizon open-loop receding optimization problem and the first
control action is applied to the processes (Zheng, Li, & Qiu, in
press). It has been applied successfully to various linear, nonlinear
systems in process industries and is becoming more widespread
(Lee, Kumara, & Gautam, 2008; Li, Zheng, & Wang, 2008;
Maciejowski, 2002; Peng, Nakano, & Shioya, 2007; Zheng, Li, &
Wang, 2011). This stimulates to design an MPC for HSLC processes.

Considering the high order and the nonlinear characteristics of
the lumped state space model of HSLC, in this paper, the EKF is
chosen to monitor the strip temperature in cooling zone since EKF
is convenient designation for high dimension system. Moreover,
a trade-off feed-back coefficient is designed in EKF to coordinate
the convergence rate and stability of EKF. In addition to the design
of EKF, an EKF and MPC based control strategy is developed to
improve the precision of CT. In main cooling zone, a predictor is
designed to predict the future temperature sequence at the inlet
of fine cooling zone according to system models and current
temperature obtained from EKF. Then this predictive sequence is
feed to the MPC, and the MPC optimizes the water flux in fine
cooling zone to improve the control accuracy of CT. Moreover, the
implementation of EKF and MPC to an HSLC process in manufac-
tory is conducted to validate their performance.

This paper is organized as follows: Section 2 presents the HSLC
process and its thermodynamic model with a reasonable accu-
racy; Section 3 designs the strip temperature monitoring method.
Section 4 is dedicated to develop the proposed MPC for HSLC
based on the designed EKF. Section 5 discusses the numerical and
experimental results. Finally, conclusions are stated in Section 6.

2. HSLC process

2.1. Process description

The HSLC process studied here is illustrated in Fig. 1. The steel
strip with length of 200–1100 m arrives at the inlet of laminar
cooling equipment at finishing rolling temperature (FRT) of 750–
900 1C, and is cooled down to CT 400–600 1C by the laminar
cooling equipment. There are 90 top headers and 90 bottom
headers in laminar cooling equipment. These headers are grouped
by 12 banks, first nine banks for the main cooling zone and last
three banks for the fine cooling zone. The gauge of strip is
measured by the X-ray gauge installed after finishing mill. Coiling
speed is measured by the speed tacho-meters installed on the
rollers’ motors and the coilers’ mandrels. FRT and CT are mea-
sured by pyrometers installed after the finishing mill and before
the coiler, respectively.

The control objective is to control CR and CT of each strip point
to be consistent with a predefined values.

The manipulated variables are the fluxes of cooling water at
the banks of spraying headers and all of them are separately
adjustable.

2.2. First principle model

The location of finishing mill, bottom surface of strip, the
location of coiler, and the top surface of strip, as shown in Fig. 1,
enclose a open thermodynamic system G. Then combining the
research results in Zhang, Wang, Li, and Li (2007), Liu, Zhang, Sun,
GaoPeng, and Su (2012), and Zheng, Li, and Wang (2010), the
HSLC process can be modeled as

_T ¼�
lðTÞ

rðTÞ � cpðTÞ
�
@2T

@l2
� _x �

@T

@x
ð1Þ

with the boundary conditions on the top and bottom surfaces

7lðTÞ
@T

@l
¼ hðT�T1Þ ð2Þ

where

h¼ hw
T�Tw

T�T1
þs0e

T4
�T4
1

T�T1
ð3Þ

hw ¼ a
2186:7

106

T

T0

� �a v

v0

� �b F

F0

� �c

ð4Þ

In (4), T0 ¼ 1000 1C, v0 ¼ 20 m=s, a¼1.62, b¼�0:4, c¼1.41. This
first principle model assumes that lðTÞ is no direction dependency
heat conductivity, the heat transfer in width direction and length
direction is neglected. The latent heat of phase transformation
is considered through the temperature-dependent thermal property
(Pehlke, Jeyarajan, & Wada, 1982; Zheng & Li, 2011). In (3), the first
right term is zero when the strip is out of water cooling section, and
the second term is zero when the strip is cooled by cooling water.

Though these models could estimate the strip temperature in
straightforward approach, the accumulate errors caused by itera-
tive hampers precisely monitoring strip temperature and make
it hard to directly be used in real-time control. Thus it is necessary
to develop a monitoring method to observe the strip transient
temperature in water cooling zone for the better control of HSLC.

3. EKF based monitoring method

3.1. State space model of HSLC

Observers are usually used to infer the unmeasured states
from measurements. It is just what the monitoring method wants
to be realized. For easy design the observer of HSLC, the (1) should
firstly transform into lumping parameter model.

Using 2D finite volumes method (Welty, Wicks, Rorrer, &
Wilson, 2009), model (1) can be reduced into a finite dimensional
problem. Divide the open thermodynamic system G into n�m

volumes, as shown in Fig. 2, where dx and dl are the length and
thickness of each volume, respectively.

Define that Ti,j as the temperature of ith in l-direction and jth
in x-direction volume. Applying energy balance to the up and
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Fig. 1. The schematic of hot-rolled strip laminar cooling process.
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Fig. 2. The spatial meshing of the open dynamic system.
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bottom surface volumes leads to

_T 1,j ¼�
lðT1,jÞ

rðT1,jÞcpðT1,jÞ

1

dl2
ðT2,j�T1,j

�
�dl

h1,j

lðT1,jÞ
ðT1,j�T1ÞÞ

�

�
1

dx
� vðT1,j�T1,j�1Þ ð5Þ

_T m,j ¼�
lðTm,jÞ

rðTm,jÞcpðTm,jÞ

1

dl2
ðTm�1�Tm

�
�dl

hm,j

lðTm,jÞ
ðTm,j�T1ÞÞ

�

�
v

dx
� ðTm,j�Tm,j�1Þ ð6Þ

for the other volumes

_T i,j ¼�
1

dl2
lðTi,jÞ

rðTi,jÞcpðTi,jÞ
ðTiþ1,j�2Ti,jþTi�1,jÞ�

1

dx
� vðTi,j�Ti,j�1Þ ð7Þ

where v¼ _x is the velocity of strip.
Denote the measurable disturbance, FTR, as

T0ðtÞ ¼ ½T1,0 T2,0 � � � Tm,0�
T ð8Þ

Set the heat transfer coefficients be mediate inputs, and

uðtÞ ¼ ½h1,1ðtÞ hm,1ðtÞ h1,2ðtÞ hm,2ðtÞ � � � h1,nðtÞ hm,nðtÞ�
T ð9Þ

where h1,iðtÞ and hm,i, i¼ 1,2, . . . ,n are heat transfer coefficients of
the corresponding volumes. Define each volume’ temperature as
the state of system, the CT (both the top surface of strip and the
bottom surface of strip) as the outputs of system:

T¼ ½TT
1 TT

2 � � � TT
n�

T

Tj ¼ ½T1,j T2,j � � � Tm,j�
T ðj¼ 1,2, . . . ,nÞ ð10Þ

yðtÞ ¼ ½T1,n Tm,n�
T ð11Þ

Define that aðTi,jÞ ¼ �lðTi,jÞ=ðdl2rðTi,jÞcpðTijÞÞ, g¼ v=ð2dxÞ, and
bðTi,jÞ ¼ aðTi,jÞ=lðT,i,jÞ, and substitute them into (5), (6) and (7),
then a nonlinear state space model of HSLC can be expressed as

_T ¼ fðTÞ � TþgðTÞ � uðtÞþDT0ðtÞ

yðtÞ ¼HT ð12Þ
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Given the initial spatial distribution of strip temperature, the
strip’s FRT and the heat transfer coefficients, the future spatial
distribution of strip temperature can be calculated through the
above equations. However the states of system model are
unknown. It demonstrates that to design an observer to recon-
struct the temperature distribution of strip is necessary.

3.2. Design of EKF

For nonlinear system, one class of first-order observers linear-
ize the nonlinear systems at current operating point and design
observer based on the linearized model, e.g. the EKF (Gryzlov,
Leskens, & Mudde, 2011; Ljung, 1979) and extended Luenberger
observer (Zeitz, 1987). Another class of approaches transform the
nonlinear models into an observable canonical form and then
design the observer based on the canonical form, e.g. the ‘‘high-gain
observers’’ (Boizot, Busvelle, & Gauthier, 2010; Tornambé, 1992).
Moreover, there are some methods which are designed based on
presenting the uncertainty on the structure and/or the parameters
of model, e.g. asymptotic observers (Dochain, Perrier, & Ydstie,
1992), sliding-mode observers (Davila, Fridman, & Levant, 2005;
Edwards, Spurgeon, Tan, & Patel, 2007; Tan, Yu, & Man, 2010),
adaptive observers (Farza, M’Saad, Maatoug, & Kamoun, 2009;
Marino, 1990). As for HSLC processes, to get an accurate HSLC
model using finite volumes method, a high dimension of system
model would be inevitable. If using high gain methods, the observer
will be too frangible. Though the EKF is more convenient to design,
it is difficult to tune the rate of convergence.

Fortunately, Boutayeb and Aubry (1999) presents a modified
method which could significantly improve the convergence of the
EKF using a trade-off matrix RðtÞ. Thus, the EKF with the trade-off
matrix is chosen since it is more convenient to design in this case.

The EKF with trade-off matrix observer is given by the
following structure (Jazwinski, 1970):

_̂
T ¼ fðT̂ÞT̂þgðT̂ÞuðtÞþDT0ðtÞþKðtÞðyðtÞ�HT̂Þ

KðtÞ ¼ PðtÞKT
ðtÞR�1

ðtÞ ð17Þ

where KðtÞ is the resulting observer’s gain, and the following
Riccati equation must be satisfied:

_PðtÞ ¼CðT̂ÞPðtÞþPðtÞCT
ðx̂ÞþQ ðtÞ�PðtÞKT

ðT̂ÞR�1
ðtÞKðx̂ÞPðtÞ ð18Þ
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where

CðT̂Þ ¼
@½fðTÞ � TþgðTÞ � u�

@T

����
TðtÞ ¼ T̂ðtÞ

KðT̂Þ ¼H ð19Þ

Q ðtÞ40 and RðtÞ40 are symmetric matrices. It should be noted
that, with the increasing of RðtÞ, the system would be more stable
but the convergence rate of EKF would be more slow (Boutayeb &
Aubry, 1999). Thus, a trade-off between stability and rate of
convergence can be obtained by

RðtÞ ¼ mKT
ðtÞPðtÞKðtÞþzIp ð20Þ

where z and m are design parameters with z40 and m40; p is the
outputs dimension.

Now, the design of HSLC model and the EKF based monitoring
method is completed. Based on the observed spatial distribution
of strip transient temperature, the real-time controller is designed
in the next section.

4. Control of HSLC

4.1. Exiting method

In manufactory, as shown in Fig. 3, the strip runs from left to
right with a constant coiling velocity vc. The cooling water flux
in main cooling zone is used to roughly control CR and CT. The
cooing water flux in fine cooling zone is used to improve the
precision of CT.

In main cooling zone, the water flux of each opened bank
equals to each other, and is controlled by a PI controller. Its’ set
point Fn

m is determined by the desired CR, Rn

C , and is obtained by
lookup table. The number of opened banks No is calculated by the
following equation:

No ¼
vc

lh
�

T F�Tn

C

RC
ð21Þ

where T F is the average FRT, Tn

C is the CT set point, lh is the length
in run-out table corresponding to one header bank and Rn

C is the
CR set point.

In fine cooling zone, as shown in Fig. 3, the process variable of
PID controller is TC and output of the controller is the set point of
the flux of each bank in fine cooling zone. The flux of each bank
Ff is regulated by a PI controller.

Since CT is dramatically effected by the strip temperature after
main cooling zone, this disturbance cannot be well deducted
by the PID controller. Therefore a new approach which could
improve the precision of CT is needed.

4.2. Proposed method

Since MPC offers good dynamic performance, handles measur-
able disturbances and caters for hard actuator limits and other

system constraints in a straightforward manner, an MPC based
control algorithm is developed for HSLC.

The control schematic is shown in Fig. 4. The difference
between the proposed method and existing method focuses on
the control in fine cooling zone. The proposed method consists of
three parts, the EKF, the measurable disturbance predictor (MDP)
and the MPC. The EKF estimates the current temperature dis-
tribution of strip along run-out table. Then the MDP predicts the
future strip temperature sequence at the inlet of fine cooling zone
and sends them to MPC. Finally the MPC calculates the optimal
water flux in the fine cooling to optimize the CT according to the
feeding measurable disturbance sequence from MDP and the
current strip temperature distribution estimated by EKF. The
details of the MDP and MPC are presented in the below context.

4.2.1. Subsystem model

The division of whole HSLC system is based on the layout of
cooling water spraying headers. Set the system from FRT sensor to
the inlet of water cooling section be the 1st subsystem, each area
under each spraying header bank be one individual subsystem,
and the area from the outlet of water cooling section to coiler be
the last subsystem. Denote the sth subsystem with Ss. According
to (12) and Euler method, the discrete subsystem model of Ss can
be directly written as follows (Zheng & Li, 2011; Zheng, Li, &
Li, 2011):

Ts
ðkþ1Þ ¼ AssT

s
ðkÞþBssusðkÞþDs,s�1Ts�1

ðkÞ

ysðkÞ ¼ CssT
s
ðkÞ

s¼ 1,2, . . . ,N

8><
>: ð22Þ

where N is the number of subsystems; Ass, Bss, Ds,s�1 and Css are
coefficient matrices of Ss; Ts

¼ ½ðTjs1
Þ
T
ðTjs2
Þ
T
� � � ðTjsn

Þ
T
�T is the state

vector of Ss, js1 . . . jsn are the columns that Ss owned; ys is the
average strip temperature in thickness direction at the outlet of
Ss, us is the input of Ss and there is a fixed relationship between us

and the water flux in Ss as follows:

us ¼ 2186:7� 10�6
� a

v

v0

� �b Fs

F0

� �c

, SsACW

us ¼ 1, SsACA

8><
>: ð23Þ

where CW is the set of subsystems in which strip is cooled by
water; CA is the set of subsystems in which strip is cooled major
through radiation; Fs is the water flux of the water spraying header
in Ss; a, b, c, F0 and v0 are constants, and their detailed definitions
are available in Zheng et al. (2010) and Zheng and Li (2011).

4.2.2. Measurable disturbance predictor

From (22) and (23), the future states of each subsystem in
main cooling zone can be expressed as

T̂
s
ðkþ iÞ ¼ Ai

ssT
s
ðkÞþ

Xi�1

h ¼ 0

Ah
ssBssum

Fig. 3. Schematic of existing control method for HSLC.

Fig. 4. Schematic of MPC based controller for HSLC.
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þ
Xi�1

h ¼ 0

Ah
ssDs,s�1Ts�1

ðkþhÞ ð24Þ

where the state of TsðkÞ can be obtained from EKF, and

um ¼ 2186:7� 10�6
� a

v

v0

� �b Fn

m

F0

� �c

, s¼ 2,3, . . . ,Noþ1

um ¼ 1 s¼ 1,Noþ2, . . . ,10

8><
>:
Cascade calculate the states of subsystems from left to right, then
the future temperature sequence at the inlet of fine cooling zone
is obtained.

4.2.3. MPC formulation

The objective of MPC is to optimize CT through the water flux
in fine cooling zone. Since Ts

ðkÞ can be observed by the designed
EKF at time k, assume that Ts

ðkÞ is available. T̂
10
ðkþ i9kÞ can be

obtained from MDP. Handling the constraints of manipulated
variables, the increments of manipulated variables, CT and the
increments of CT. Then the MPC becomes solving the following
optimization problem at each sampling time instant k:

min
DUðkÞ

XP

i ¼ 1

:Tn

c�T̂ cðkþ i9kÞ:2

qi
þ
XM
j ¼ 1

:Duf ðkþ j�19kÞ:2

gi

s:t: T̂
s
ðkþ iÞ ¼Ai

ssT
s
ðkÞþ

Xi�1

h ¼ 0

Ah
ssBssuf ðkþh9kÞ

þ
Xi�1

h ¼ 0

Ah
ssDs,s�1T̂

s�1
ðkþhÞ, s¼ 11,12,13

T̂
N
ðkþ iÞ ¼Ai

NNTN
ðkÞ

þ
Xi�1

h ¼ 0

Ah
ssBssþ

Xi�1

h ¼ 0

Ah
NNDN,N�1T̂

N�1
ðkþhÞ

T̂ cðkþ i9kÞ ¼ CNNT̂
N
ðkþ iÞ

Dumin
f rDuf ðkþ j�1ÞrDumax

f

Dumin
f rDuf ðkþ j�1ÞrDumax

f

Tmin
c r T̂ cðkþp9kÞrTmax

c

DTmin
c r T̂ cðkþp9kÞ�T̂ cðkþp9kÞrDTmax

c ð25Þ

where DUðkÞ ¼ ½Duf ðkÞ Duf ðkþ1Þ � � � Duf ðkþMÞ�T; fumin
f ,umax

f g,
fDumin

f ,Dumax
f g, fTmin

c ,Tmax
c g and fDTmin

c ,DTmax
c g are boundaries of

manipulated variable, increment of manipulated variable, CT and
increment of CT, respectively; qi and gj are the weight coefficients;
N¼14. In each sampling time, MPC solves problem (25) and
applies uf ðkÞ ¼ uf ðk�1ÞþDun

f ðkÞ to HSLC process to control the
water flux of the headers in fine cooling zone, where Dun

f ðkÞ is the
first element of optimal solution of problem (25).

So far, the proposed HSLC monitoring method and control
algorithm is designed. Does it work well? Section 5 gives the
validation of this method.

5. Numeric and experimental results

5.1. Validation of system model

To validate the designed model, an experiment is performed
with the parameters of strip steel shown in Table 1. Seven header
banks are opened with water flux of 233 m3=ðs m2Þ in main
cooling zone, and all header banks are opened with water
flux of 150 m3=ðs m2Þ in fine cooing zone. The coiling speed is
10.5 m/s.

In the transformation of system model, the open dynamic
system mentioned above is divided into five volumes of 1.2 mm
in l-direction and 14 volumes of 5.4 m in x-direction.

Fig. 5 shows the predictive CT by model (12) and the measure-
ment of CT. The maximum bias between the prediction and the
measurement is nearly 20 1C. It is because that, on the one hand,
the predictive CT is obtained by the recursive of system model.
The error of CT is enlarged large due to the accumulation of errors.
On the other hand, it is too expensive to accurately model all
types of strips since there are too many types of strips and each
type of strip has different model coefficients, thus error exists in
strip cooling model.

5.2. Validation of the monitoring method

5.2.1. Simulation

Two cases of simulations are carried out to validate the
proposed monitoring method: (1) inputs varying and no mea-
surement error, (2) inputs varying and the measurement distur-
bance existing in outputs. The covariance matrix Q in EKF
was selected by try-and-error method. Set m¼ 0:2 and z¼ 1,
respectively.

Case1: In this case, different initial state vectors are used in
process model and observer to validate the convergence of the
monitoring method. The parameters given in Table 1 are used. Set
the initial state vector of process model be the spatial distribution
of strip temperature shown in Fig. 6(a), and set the initial state
vector of observer be 30 1C higher than that of process model.
As is shown in Fig. 6(b), the first six header banks in main cooling
zone and the first two header banks in fine cooling zone are used
to cooling strip. Set the flux of cooling water in main cooling zone
and the flux of cooling water in fine cooling zone, as well as the
FRT, all are time-varying, be those shown in Fig. 7. Set the coiling
speed v be 9.96 m/s.

The simulation demonstrates, see Fig. 8, that even under the
affection of FRT and the flux of cooling water in both main cooling

Table 1
Parameters of strip.

Item, unit Values

Tw ,K 298.5

T1 , K 298.5

lðT1,iÞ, W/(m K) 56:43�ð0:0363�cðv�v0ÞÞ � T1,i

lðTm,iÞ, W/(m K) 56:43�ð0:0363�cðv�v0ÞÞ � Tm,i

a, mm2=s,

Ti,j A ½400,650Þ
8:65þ

ð5:0�8:65ÞðTi,j�400Þ

250

a, mm2=s,

Ti,j A ½650,700Þ
5:0þ

ð2:75�5:0ÞðTi,j�650Þ

50

a, mm2=s,

Ti,j A ½700,800Þ
2:75þ

ð5:25�2:75ÞðTi,j�700Þ

100

a, mm2=s,

Ti,j A ½800,1000�

5:25þ0:00225ðTi,j�800Þ
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Fig. 5. The measurement and prediction of CT.
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zone and fine cooling zone, the results of observer could con-
vergent to the results of system model.

Case2: In this case, a Gaussian random noise is added to the
temperature sensor signals with zero mean and a standard
deviation of 710 1C to investigate the designed observer’s char-
acteristic of against noisy. The other design conditions are same
as those in case 1 and are shown in Fig. 6 and Table 1.

The simulation results are shown in Fig. 9. Among these
figures, (a)–(d) present the strip temperature estimated by
observer and system model. These figures show that the noisy
effects very small on the observer. Especially, it almost do nothing
to the estimated strip temperature before the 11th header bank
when using the proposed monitoring method. (e) and (f) give
both the CT estimated by process model and the CT estimated by
observer, as well as the CT with measurement noisy. These figures
show that the EKF could effectively filter Gaussian random noise

and give satisfactory estimates of the transient temperature of
strip in HSLC processes.

5.2.2. Experimentation

Apply the proposed monitoring method to the HSLC process at
one steel Ltd. Co., China, and use a mobile pyrometer, which could
work even in moisture, to measure the strip surface’s temperature
under 5th header bank. The result shown in Fig. 10 presents that
the temperature measured by the mobile pyrometer and esti-
mated by the proposed method are very close to each other.

5.3. Performance of proposed controller

To validate the performance of the proposed control method and
further test the monitoring method, three tests are conducted in
manufactory: (1) use the existing control method, (2) use the
proposed control method but the result of EKF is not used in MDP,
(3) use the proposed control method. Set the predictive horizon of
MPC be 10, and the control horizon be 5. Experiences show that the
computation in MPC could be accomplished within 0.2 s if the
computer is not slower than the one with the 1.5 G CPU speed and
516 Mb memory. It is fast enough for the implementation, since the
control period of HSLC is 0.37 s.

The experimental results are shown in Fig. 11–13. These
figures show that the proposed method gets the best results,
the amplitude of error of CT is less than 9 1C. And the result of test
2 is better than the result of test 1. That is because that the test
2 and test 3 handle the measurable disturbance in controllers.
Moreover, the fact that the CT in test 3 is more accurate than that
in test 2 also demonstrates that the EKF monitoring method do
help to the control of HSLC process. In a conclusion, the EKF and
MPC based control algorithm is an effective method for HSLC
process, which could improve the precision of CT.

6. Conclusions

A method to monitor the spatial distribution of strip tempera-
ture and control the CT for HSLC processes is studied in this paper.
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Firstly, an accurate state space model is deduced to describe the
evolution of strip temperature. Then a modified EKF, in which
a time-varying trade-off matrix is designed to balance the stability
and convergence speed of EKF, is developed to observe the spatial
distribution of strip temperature in water cooling section. Finally, a
MPC based control method is developed for the accurate control
of CT. Experimentations and simulations prove that the proposed

monitoring method could excellently reconstruct the spatial distribu-
tion of strip’s temperature from several temperature measurements,
even when the bias in initial temperature and/or measurement noise
exist. And an improved precision of CT can be achieved by proposed
control method.
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Fig. 11. The measurement CT under the control of existing method.
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Fig. 12. The measurement CT under the control of MPC where the result of EKF is

not used in MDP.
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Fig. 13. The measurement CT under the control of proposed method.
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